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Solidification of gallium (Pr = 0.02) in liquid bridges in zero-gravity conditions
is investigated by numerical solutions of the three-dimensional and time-dependent
flow-field equations. A single region (continuum) formulation based on the enthalpy
method is adopted to model the phase-change problem. This paper analyzes the in-
fluence of the azimuthally asymmetric and steady first bifurcation of the Marangoni
flow on the shape of the solid/melt interface during the crystal growth process. The
numerical results show that this interface is distorted in the azimuthal direction. The
distortion is related to the sinusoidal three-dimensional temperature disturbances
due to the instability of the Marangoni flow. The three-dimensional flow field orga-
nization, related to the wave number, changes during the solidification process; this
behavior is explained according to the variation of the aspect ratio of the solidify-
ing liquid bridge. A correlation law is found for the azimuthal wave number of the
instability as function of the melt zone aspect ratio. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Single crystals of elemental and compound semiconductors play an important role as basic
materials for electronic and optoelectronic device applications. The float zone method is an
important technique to produce high quality crystal material. By the containerless method,
crystals can be grown with less contamination, more homogeneity, and higher purity. In
these techniques the melt is positioned and solidified, without physically contacting the
container’s wall, in order to minimize container-induced contamination and heterogeneous
nucleation.

In the float zone crystal growth, a melt zone is produced by heating a short length of feed
rod by a heat source such as a ring heater. The rod is slowly moved through the hot zone,
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and the crystal is obtained by resolidification of the melt as it is moved away from the melt
zone. If the melt/crystal interface remains flat during the resolidification, often uniform and
high quality single crystals can be produced. In particular the quality of crystals is highly
dependent upon the uniformity of the thermal field at the solidifying interface and hence
on the convection fields there [1].

Microgravity gives the possibility of avoiding some limitations related to the ground
environment, e.g., buoyancy-driven convection, that is one of the most important causes
of imperfections and crystal defects. Moreover in zero-g conditions it is possible to form
very large floating zones. During recent years, the availability of sounding rockets and or-
biting laboratories such as the Spacelab has made possible microgravity experiments and
manufacturing processing, which could not be performed on Earth under normal gravity
conditions. However, even in microgravity the presence of free-melt-gas interface at dif-
ferent temperatures and hence of surface tension gradients induces Marangoni convection.
Typically liquid metals are opaque and at large temperatures, so that it is hard to visualize
and to study Marangoni flow in real floating zones. Other difficulties in the analysis of
Marangoni flow in real floating zones are that, due to phase change related to melting and
solidification of the material, the geometry of the liquid volume is not known a priori. This
led the investigators to introduce in the middle 1970s the so-called “half zone” model for
the study of the features of the Marangoni flow in floating zones. The flow situation in this
model corresponds (approximately) to that of half of a floating zone, heated radially by a
ring heater positioned on the equatorial plane around the zone.

Experiments [2] performed with transparent liquids (with Prandtl numbers higher than
those typical of liquid metals) have shown that for sufficiently small values of the Marangoni
number, the convection in the liquid column is laminar, steady, and axisymmetrical, but
when the Marangoni number exceeds certain critical values, depending on the Prandtl
number of the liquid, on the geometry, and on the boundary conditions, the liquid motion
can undergo a transition to an oscillatory three-dimensional complex flow pattern. The
appearance of these instabilities provides a possible explanation to justify the presence of
undesirable macroscopic and microscopic imperfections in the final crystals obtained under
microgravity conditions.

A number of theoretical and numerical studies have been carried out based on the linear
stability theory [3, 4]. The development of supercomputers and efficient numerical methods
led the investigators to study the problem through direct numerical solution of the nonlinear
and time-dependent Navier–Stokes equations. Rupp et al. [5], Levenstam and Amberg [6],
Imaishi et al. [7], Yasushiro et al. [8], and Leypoldt et al. [9] found that for liquid metals the
first bifurcation is stationary (i.e., the supercritical three-dimensional state is steady) and
that the regime becomes oscillatory only when the Marangoni number is further increased
(second oscillatory bifurcation). Lappa and Savino [10] and Lappa et al. [11] used parallel
supercalculus to study the azimuthal structure (characterized by the appropriate value of
the azimuthal wave number of the instability) of the flow pattern that is established after
the first Marangoni flow bifurcation. They analyzed the influence of the aspect ratio and
of the noncylindrical (convex or concave) interface shape. Shevtsova et al. [12] and Lappa
et al. [13, 14] analyzed the features of the Marangoni flow instability for high Prandtl
number liquids. Comparison of the linear stability results with the computational results
has confirmed that for high Prandtl numbers the instability is oscillatory (Hopf bifurcation),
whereas for low Prandtl numbers the instability breaks the spatial axisymmetry (but the
flow regime is still steady) prior to the onset of time-dependent flow field (in this case
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the instability is hydrodynamic in nature; i.e., its mechanism does not involve a coupling
between the temperature and the velocity disturbances).

Since it is very difficult to conduct well-controlled experiments with liquid metals of
small Prandtl numbers (due to the opacity, reactivity, and high temperatures of the melts),
there are only a few experiments on the flow instability in half zone liquid bridges of
semiconductor materials [15–20]. Nakamura et al. [17] and Hibiya et al. [19] studied the
Marangoni flow azimuthal organization in a half zone of silicon (Pr = 0.02, diameter D =
1 (cm)) under highly supercritical conditions using x ray radiography with zirconium-core
tracers. During a sounding rocket mission and other parabolic flights they observed that
when the column height was short (column formation period), the tracer particles preferred
to stay at positions 90◦ apart from each other, while after a silicon column with full height
was formed, tracer particles preferred to stay at positions of 180◦ apart from each other.
This behavior was interpreted as a change of the azimuthal wave number during the melting
process. To better analyze the above phenomena an “ideal” solidification process of pure
gallium in half zone liquid bridges in zero-g conditions is numerically simulated in the
present paper. Gallium was chosen for the simulation due to the low melting point that
makes it suitable for future experimental investigations at relatively low temperatures (close
to the ambient temperature).

2. PHYSICAL AND MATHEMATICAL MODEL

2.1. Basic Assumptions

The geometry of the problem is shown in Fig. 1a. At the instant t = 0, a cylindrical liquid
bridge of length L and diameter D is held between two coaxial disks at different tempera-
tures. The upper disk in Fig.1a is kept at the temperature TH higher than the temperature TC

of the lower cold disk. The solidification takes place as the temperature TC is decreased to
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FIG. 1. Sketch of the liquid bridge.
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a value which is less than the melting temperature Tm. The instantaneous distance from the
disk at temperature TH of the point given by the intersection of the crystal–melt interface and
of the liquid bridge symmetry axis is denoted by L i (Fig. 1b). The ratio Ai = L i/D is denoted
as the “melt aspect ratio.” The temperature difference imposed at t = 0 is denoted by �T .

The liquid phase is assumed homogeneous and Newtonian, with constant density and
transport coefficients. The liquid–gas interface is characterized by a surface tension σ

exhibiting a linear decreasing dependence on the temperature

σ = σo − σT (T − T o), (1)

where σo is the surface tension for T = T o; σT is the negative rate of change of the surface
tension with temperature (σT = −dσ/dT > 0).

2.2. Phase Change Modeling Theory

Due to the absorption or release of latent energy, phase-change problems are nonlinear.
The numerical procedures able to solve these problems can be divided into two groups:

(1) Multiple region solutions that utilize independent equations for each phase and couple
them with appropriate boundary conditions at the solid/liquid interface. Difficulties arise
when this technique is employed since the governing equations are based on the classical
Stefan formulation, i.e., a temperature-based heat transfer equation. In this case in the
vicinity of the phase change, conditions on temperature, velocity, and latent heat evolution
have to be accounted for. This effectively rules out the application of a fixed-grid numerical
solution, as deforming grids or transformed coordinate systems are required to account for
the position of the phase front.

(2) Single region (continuum) formulations which eliminate the need for separate equa-
tions in each phase by establishing conservation equations which are universally valid. The
major advantage of the single region formulations is that they do not require the consider-
ation of interface motion and boundary conditions internal to the solidifying domain and
hence, the associated use of quasi-steady approximations, numerical remeshing, and coor-
dinate mapping. In the present paper the continuum model (single region formulation) is
adopted (see [21–24]).

Assumptions invoked in the development of equations for this continuum model include:
laminar flow, Newtonian behavior of the phases (this implies that solids should be treated
as highly viscous fluids), constant phase densities, and local thermodynamic equilibrium.
In addition the density ρ and the specific heat Cp are assumed to be equal in the solid and
liquid phases. Moreover the solid phase is assumed to be nondeforming and free of internal
stress, while the mushy multiphase region (region where phase change occurs) is viewed as
a porous solid characterized by an isotropic permeability η (see Voller et al. [21], Bennon
and Incropera [22], and Brent et al. [24]).

The enthalpy method is used to solve the temperature field over the computational domain
including both the solid and liquid phases.

2.3. The Enthalpy Method

The so-called “enthalpy formulation,” which allows a fixed-grid solution to be under-
taken, removes the need to explicitly satisfy conditions at the phase front and is therefore
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able to utilize standard solution procedures for the fluid flow and energy equations directly,
without resorting to mathematical manipulations and transformations. The enthalpy meth-
ods account for the latent heat in the energy equations by assigning a nodal latent heat value
to each computational cell according to the temperature of the cell. Upon changing phase,
the nodal latent heat content of the cell is adjusted to account for latent heat absorption or
evolution, this adjustment being reflected in the energy equation as either a source or sink (a
distinctive advantage of this arrangement is that no explicit conditions for energy conserva-
tion at the solid/liquid interface need to be accounted for). Latent heat during phase change is
incorporated in the energy equation using for each phase the following definition of enthalpy

h = CpT + �H, (2a)

where �H = βLm, Lm is the latent heat, Cp the specific heat coefficient, and β the liquid
fraction defined as

β = 0 for T < Tsol

β = T −Tsol
Tliq−Tsol

for Tsol ≤ T ≤ Tliq

β = 1 for T > Tliq.

Tsol = Tm − �Tm and Tliq = Tm + �Tm, 2�Tm is a temperature interval chosen to represent
the range over which phase change occurs (Tliq is the liquidus temperature at which solid
formation commences and Tsol is the temperature at which full solidification is achieved; see
Voller et al. [21]). An extended temperature range is considered for solidification. From a
“physical” point of view this assumption is based on the idea (Voller et al. [21] and Bennon
and Incropera [22]) that in many cases solid formation occurs as a permeable crystalline-
like matrix which coexists with the liquid phase (mushy region). From a numerical point
of view a linear approximation is considered for the liquid fraction since a step change in
the liquid fraction could cause serious numerical instabilities. Further details are reported
in Section 3.2.

During solidification, latent energy is released at the interfaces which separate the phases
within the mushy region. Thus the energy equation can be written as

∂ρh

∂t
+ ∂ρ(βLm)

∂t
= −∇· [ρV h] + k∇2T, (2b)

where k is the thermal conductivity; the unsteady latent heat content term on the left side
of (2b) is equal to zero for T < Tsol and T > Tliq (it influences the energy equation only
within the mushy region).

Equation (2b), together with the continuity and Navier–Stokes equations, can be posed
in nondimensional form scaling the lengths by the axial distance between the circular disks
(L) and the velocity by the energy diffusion velocity Vα = α/L(α = K/ρCp is the thermal
diffusivity); the scales for time and pressure are, respectively, L2/α and ρα2/L2.

The nondimensional conservative form reads

∇· V = 0 (3a)

∂V

∂t
= −∇p −∇· [V V ] + Pr ∇2V − Pr

1

η
V (3b)

∂T

∂t
+ Lm

Cp

∂β

∂t
= −∇· [V T ] + ∇2T, (3c)
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where V and p are the nondimensional velocity and pressure, Pr is the Prandtl number,
defined by Pr = ν/α (ν = µ/ρ is the kinematic viscosity).

An important problem with fixed-grid solution procedures is accommodating the zero
velocity condition, which is required as a liquid region turns to solid. Various methods (see
Brent et al. [24]) have been used to “switch off” velocities in computational cells that are
freezing (or “switch on” velocities in the case of melting). Velocities may simply be set to
zero. Another possible approach is based on the viscosity. The viscosity of a cell is driven to
a very large value as the latent heat content of the cell falls to zero. The increasing viscosity
provides the necessary coupling between the physical state of the material in the cell and
the momentum equations, thereby driving velocities to zero in cells that are solid. A third
possible approach (enthalpy–porosity approach) requires that computational cells that are
undergoing a phase change are modeled as a pseudo-porous media, with the porosity η

being a function of �H ranging between 1 (fully liquid cell) and 0 (fully solid cell). This
approach has been used for the present computations. The term −Pr 1

η
V in Eq. (3b) is the

Darcy term (see Bennon and Incropera [23] and Brent et al. [24]) added to the momentum
equation to eliminate convection in the solid phase. In the present analysis permeability is
assumed to vary according to the Carman–Kozeny equation (Bennon and Incropera [23]
and Brent et al. [24])

η = β3

(1 − β)2
. (4)

In the pure solid (β = 0) and pure liquid (β = 1), Eq. (3b) reduces to the appropriate limits,
namely η = 0 and η = ∞, respectively. In practice the effect of η is as follows: in full
liquid elements η−1 is zero and has no influence; in elements that are changing phase, the
value of η−1 will dominate over the transient, convective, and diffusive components of the
momentum equation, thereby forcing them to imitate Carman–Kozeny law; in totally solid
elements, the final large value of η−1 will swamp out all terms in the governing equations
and force any velocity predictions effectively to zero. Since each of the continuum equations
is valid throughout the entire domain, explicit consideration need not be given to boundaries
between solid, multiphase, and liquid regions.

2.4. Initial and Boundary Conditions

The initial conditions are

t = 0: V (z, r, ϕ) = 0, T (z, r, ϕ) = Tliq + z�T ; (5)

i.e., the liquid is motionless and the temperature is TC = Tliq on the cold disk and TH =
Tliq. + �T on the hot disk.

For t > 0, no-slip conditions are considered for both the supporting disks. When, for
t > t∗ the solidification process starts (t∗ is the instant at which solidification takes place),
the thermal boundary conditions on the disks are

On the cold disk 0 ≤ r ≤ R/L; 0 ≤ ϕ ≤ 2π

TC = Tliq − c(t − t∗), (6a)

where c is the ramping rate.
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On the hot disk 0 ≤ r ≤ R/L; 0 ≤ ϕ ≤ 2π

TH = Tliq + �T, (6b)

the kinematic condition of stream surface (zero normal velocity), the Marangoni conditions
(shear stress balance), and the adiabatic condition are applied on the cylindrical interface

On the cylindrical free surface 0 ≤ z ≤ 1; 0 ≤ ϕ ≤ 2π

Vr (z, r = R/L , ϕ, t) = 0 (7a)

∂VZ

∂r
(z, r = R/L , ϕ, t) = −Mar

∂T

∂z
(z, r = R/L , ϕ, t)β(z, r = R/L , ϕ, t) (7b)

r
∂Vϕ

∂r
(z, r = R/L , ϕ, t) − Vϕ(z, r = R/L , ϕ, t)

(7c)
= −Marβ(z, r = R/L , ϕ, t)

∂T

∂ϕ
(z, r = R/L , ϕ, t)

∂T

∂r
(z, r = R/L , ϕ, t) = 0, (7d)

where the reference Marangoni number Mar is defined as Mar = σT L/µα.
The Marangoni number corresponding to the applied temperature difference is computed

as Ma = �T · Mar = �T σT L/µα; further to the Marangoni number, the instantaneous
Marangoni number is defined as Mai = �T σT L i/µα.

3. NUMERICAL SOLUTION

Equations (3) and the initial and boundary conditions (6)–(7) were solved numerically
in cylindrical coordinates in primitive variables by a control volume method. The domain
was discretized with a nonuniform but structured axisymmetric mesh and the flow field
variables defined over a staggered grid. The conservation laws have been written for an
arbitrary spatial domain � bounded by a surface ∂�. Integrating over the generic control
volume and using the Gauss theorem to transform volume integrals in surface integrals, the
equations read

V n+1 = V n + �t
1

�


−

∫

∂�

[V V ] · n d S + Pr
∫

∂�

[∇V ] · n d S




n

− �t
1

�

∫

�

∇pn d� − �t
1

�
Pr

1

η

∫

�

V n+1 d� (8a)

T n+1 = T n + �t
1

�


−

∫

∂�

[V T ] · n d S +
∫

∂�

[∇T ] · n d S




n

1

ξ
, (8b)

where

ξ = 1 + Lm

Cp

1

Tliq − Tsol
for Tsol ≤ T ≤ Tliq

ξ = 1 for T < Tsol and T > Tliq.
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The problem is solved with the well-known marker and cell method (see, e.g., Lappa and
Savino [10] and Fletcher [25]).

3.1. Marangoni Flow and Grid Stretching Technique

The computations were performed using nonuniform grids. A finer grid was introduced
near the free surface to locally enhance the resolution. The number of points clustered
near the free surface are specified using the notation N z × (Nrb + Nrs) (where Nrs is the
number of points stretched near the free surface and Nrb the points uniformly distributed in
the bulk over a radius Rb = 0.7R). The Nrs points near the free surface are clustered using
the stretching function (s) due to Roberts and Eiseman (for further details see Fletcher [25];
for the present computations the stretching control parameters P = 1 and Q = 2 have been
used). This corresponds to a grid stretching factor δ not constant with a maximum value
(δmax) for the layer of points adjacent the free surface.

The code has been carefully validated through comparison with other results available
in the literature (for further details on the validation of the code and on the grid refinement
analysis see Lappa et al. [11, 13, 14]).

3.2. Definition of the Phase Change Zone Thickness

According to Brent et al. [24], in the case of an isothermal phase change (pure substance),
the flow inside computational cells that are melting or freezing does not follow exactly the
governing laws for flow in a mushy zone. In an isothermal phase-change system, the phase
front is a well-defined line (in reality there will be a boundary layer on the solidification
surface) and has no band or width associated with it as in the case of a mushy phase change.

Even if, in an isothermal phase-change problem dealing with liquid metals, the mushy
zone from a “physical point of view” is reduced to a very thin boundary layer, in a discretized
calculation domain, anyway, a fixed grid solution technique “cannot capture” in detail this
layer. The numerical technique in fact cannot handle thin boundary layers since, as pointed
out by Brent et al. [24], the phase front will have a finite width associated with it, this width
being at least that of a single computational cell. When the fixed-grid-enthalpy approach is
employed, the only way to “capture” the “physics” of the boundary layer on the solidification
surface would be to reduce the width of the computational cells up to the real thickness of the
layer where phase change occurs (a few µm). This is out the scope of the present work. For
the case under investigation, moreover (liquid column having initial length L = 1 (cm)), this
would require a prohibitive number of computational points along the axis of the liquid zone
(on the order of 103–104). Due to the fact that enormous speed and memory requirements
are necessary for the direct numerical solution of the three-dimensional Navier–Stokes
equations, for the present computations “only” 40 points have been used in axial direction
(170 CPU hours of computations have been required for each simulation, see Fig. 2 showing
the grid.). The “thickness” of the mushy zone is strictly related to this number since its width
corresponds to the �z coming out from the discretization of the liquid zone in the axial
direction (for the present computation, in agreement with the findings of Brent et al. [24],
the thickness of the mushy zone corresponds to one/two layers of adjacent computational
cells).

Moreover, as pointed out by Voller et al. [21], Bennon and Incropeira [22, 23], and Brent
et al. [24], it is desirable that the method chosen allows for a smooth, gradual transition rather
than a step change. For this reason the amplitude of the temperature range over which phase
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FIG. 2. Computational grid.

change occurs has to be chosen in order to avoid step changes in the temperature fields (step
changes in the momentum and energy equation source terms tend to retard convergence of
their numerical solution and sometimes lead to oscillations that may result in divergence),
and at the same time in order to be consistent with the physics of the phenomenon under
investigation: for the present case (phase-change zone reduced to a thin boundary layer and
40 computational cells distributed in the axial direction) a temperature range of 0.5 (K) was
fixed; this choice proved to be a good compromise between the need to avoid step changes
and the need to represent the phase-change boundary layer with a number of computational
cells in the axial direction as low as possible. Preliminary computations were carried out to
show the negligible influence of the temperature range chosen for the phase-change zone
on the problem under investigation.

According to Voller et al. [21], “the nature of the flow in the mushy region will influence
its shape.” This is true, however, when the solidification process is carried out in the case of
high Prandtl number liquids (i.e., Pr � 1, Voller et al. study the case of Pr = 1000). In these
cases in fact, due to the low thermal diffusivity of the material (in the case of transparent
substances usually α = O(10−4) (cm2/s)), in many situations the thickness of the mushy
zone is very large. Due to this large thickness, the amount of convection “protruding” in the
mushy zone is great and the flow inside this zone largely influences its shape. This, however,
is not the case of a liquid metal (Pr � 1, α = O(10−2) (cm2/s)). In the case of a low Prandtl
number liquid, the mushy zone is reduced to a boundary layer (whose thickness corresponds
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to one/two layers of computational cells) and due to the “switch off” condition that drives
velocities to zero in a so thin zone, that the effect of the convection on the shape is very weak.

A test with a different size mushy region has been carried out to assess that the shape
of this zone is not influenced by the temperature range chosen for the phase change zone.
Since one may suspect that differences with respect to the computations carried out for an
amplitude of the temperature range equal to 0.5 (K) may arise when further reducing the
size of the mushy region to the isothermal case, the amplitude of the temperature range has
been reduced from 0.5 to 0.25 (K). The numerical simulations have shown that the influence
of the amplitude of the temperature range (when this range is sufficiently low, close to the
isothermal case) on the shape of the mushy zone is very weak. The size is reduced but the
cystal/melt interface defined as the isoline at T = Tm does not change its shape.

Regarding the effect of the thickness and curvature of the mushy zone on the flow, it
should be pointed out moreover that the Marangoni flow is a “large scale flow” whose
properties do not depend upon the local curvature of the boundary of the mushy zone
and/or upon its thickness. A preliminary study has been carried out to assess that the
large scale flow field does not depend upon the shape of the mushy region. At each instant
the axial boundaries of the mushy region computed according to the temperature distribution
have been replaced with average axial values obtained by averaging the z-coordinate of the
boundaries over their entire surface, thus making the mushy zone a “horizontal band.”
The results of this simulation show that the spatio-temporal behavior of the flow field (the
structure of the field in the meridian plane and the azimuthal wave number of the instability
and their modification as time passes) is the same as for the case of nonplanar mushy zone.

3.3. Model Validation

The numerical technique has been validated through comparison with the recent ex-
perimental results of de Groh and Lindstrom [26] in the case of solidification of pure
succinonitrile. This article by de Groh and Lindstrom was considered since, as declared
by the authors, their aim was to present interface shape and thermal data to be used to
validate numerical models. Succinonitrile was considered by de Groh and Lindstrom since
it is transparent and the shape of the phase front to be compared with the numerical re-
sults can be determined with great accuracy from an experimental point of view. They
conducted an experimental study of the crystal growth of succinonitrile during solidifica-
tion, melting, and no-growth conditions using a horizontal Bridgman furnace and square
glass ampoule (15-cm long, 0.8-cm thick with a wall thickness of 0.1 cm). For use as input
boundary conditions to numerical codes to be validated, thermal profiles on the outside
of the ampoule were measured along its length and the shapes of the solid/liquid inter-
face were quantitatively determined. The experiments were conducted with the furnace in
a horizontal orientation, with an applied temperature difference of 75 K and at furnace
translation rates of 0 µm/s (no growth), 40 µm/s (solidifying), and −40 µm/s (melting).
The second case was considered here for comparison since it deals with the solidifica-
tion process. In the numerical simulations the presence of the glass ampoule with a wall
thickness of 0.1 cm was simulated in order to reproduce realistic conditions. A temper-
ature range of 2 K was considered to model the zone over which phase change occurs.
Central schemes were used for the convective terms and 300 × 40 points for the compu-
tational grid. The comparison between numerical and experimental results is shown in
Fig. 3.
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FIG. 3. Validation of the phase-change technique—comparison between experimental and numerical results.

4. RESULTS

Liquid bridges of gallium (see Table I for the physical properties), having initial length
L = 1 cm and two different initial aspect ratios (A = 1.0 and A = 0.5), were considered.
Forty points were collocated in the axial direction; in the radial and azimuthal directions
Nr = 22 = 11 + 11 and Nϕ = 26 in the case A = 1.0 and Nr = 26 = 13 + 13 and Nϕ =
30 in the case A = 0.5 (see Fig. 2). Each case required more than 170 CPU hours of
computations on a Digital 433au workstation.

For both aspect ratios, a temperature difference of 4 K was considered (correspond-
ing to a Marangoni number Ma = �T σT L/µα ∼= 110). For this value of the Marangoni
number, the axisymmetric flow field is unstable and for both the aspect ratios a steady,
three-dimensional flow regime is established after a certain time denoted by t∗. According

TABLE I

Physical Properties of Gallium

Density ρ (g/cm3) 6.10
Thermal diffusivity α (cm2/s) 1.66 × 10−1

Kinematic viscosity ν (cm2/s) 3.44 × 10−3

Dynamic viscosity µ (g/cm/s ) 2.12 × 10−2

Specific heat coefficient Cp (J/g/K) 0.40794
Latent heat of fusion Lm (J/g/K) 80
Melting temperature Tm (K) 302.91
σT (dyne/cm K ) 1 × 10−1
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FIG. 4. (a) Flow field in the meridian plane ϕ = −π/6. (b) Azimuthal velocity distribution in the section
z = 0.75. (c) Temperature disturbances r = 1/2A. (d) Temperature distribution in the section z = 0.75 (A = 1.0,
Ma = 110, t = t∗).

to previous studies, the numerical results show that in this flow regime the position of the
vortex core is displaced sinusoidally along the azimuthal perimeter of the liquid zone and the
temperature field is characterized by sinusoidal distortions in azimuthal direction. Hereafter
the differences between the temperature fields and the azimuthally averaged temperature
distributions (referred to as temperature disturbances) will be reported in order to show
clearly the azimuthal wave number .

For an initial aspect ratio A = 1.0, the steady and asymmetric supercritical Marangoni
flow is characterized by an azimuthal wave number m = 1. Figures 4b and 4c show that
in the generic cross section orthogonal to the liquid bridge axis there are two azimuthal
convective cells and two thermal spots on the liquid bridge surface (one cold and the other
hot). The temperature contours in Fig. 4d show a lower temperature inner region whose
shape is circular but whose position is eccentric to the geometrical axis of symmetry of the
liquid bridge. In this case the supercritical flow appears as an inclined toroidal vortex. In
each meridian plane of the liquid bridge there are two asymmetrical vortex cells (one of the
two vortex cells in the section prevails over the other and is extended along the whole axial
plane of the bridge; for instance, see Fig. 4a).

For t > t∗, the temperature on the cold disk is reduced with a ramp of 0.1 K/s and the
crystallization front advances, as shown in Figs. 5–9. The temperature interval chosen to
represent the range over which phase change occurs (2�Tm) has been fixed to 0.5 K.
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FIG. 5. (a) Flow field in the meridian plane ϕ = −π/6. (b) Azimuthal velocity distribution z = 0.75.
(c) Temperature disturbances r = 1/2A. (d) Temperature distribution z = 0.75 (Ai = 0.885, Mai = 100,
t − t∗ = 2.6).

Due to the azimuthal distortion of the thermo-fluid-dynamic field, the shape of the crystal
is not axisymmetric. This is shown clearly in Fig. 5a and in Fig. 10a for Ai = 0.885(Mai =
100). In Fig. 5a the distortion of the boundaries of the transition zone is shown in relationship
to the asymmetric flow field structure in the meridian plane ϕ = −π/6. The distortion of the
boundaries of the mushy zone is more pronounced on the left side of the liquid zone where
the strongest vortex cell is present. Due to this distortion, the thickness of the transition zone
is not uniform in the meridian plane; the thickness is larger in the right side. In Fig. 10a the
temperature isosurface corresponding to T = Tm (average crystal/melt interface) is shown.
The shape of the surface is convex. Due to the steady Marangoni instability, it is azimuthally
distorted and has an axial minimum at ϕ = −π/6. The corresponding surface temperature
disturbance distribution (Fig. 5c) shows that the azimuthal wave number is still m = 1 since
only two temperature spots are present. However, the hot spot is more extended in azimuthal
direction with respect to the cold spot. This situation is different compared to that observed
at t = t∗, where the two spots have exactly the same azimuthal extension. This behavior
suggests that the azimuthal organization of the flow has been influenced by the presence of
the crystal.

For Ai = 0.72 (Mai = 82, Fig. 6c), the spots on the free surface become four (two hot
and two cold). This indicates that the azimuthal wave number is changed from m = 1 to
m = 2, due to the solidification process. Four convective cells appear in the section as
shown in Fig. 6b; the inner region in this case is not circular but approximately elliptic
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FIG. 6. (a) Flow field in the meridian plane ϕ = −π/6. (b) Azimuthal velocity distribution z = 0.75.
(c) Temperature disturbances r = 1/2A. (d) Temperature distribution z = 0.75 (Ai = 0.72, Mai = 82, t − t∗ = 6.2).

with center corresponding to the geometrical axis of symmetry of the liquid bridge (see
Fig. 6d).

According to previous results (Lappa et al. [11]), for even azimuthal wave numbers,
the flow field structure is on the whole three-dimensional and depends on the azimuthal
coordinate, but in each meridian plane the velocity and temperature are symmetric (for
instance, see Fig. 6a). For this reason the azimuthal distortion of the mushy region boundaries
due to the Marangoni flow instability cannot be highlighted in the generic meridian plane.
Figure 10b shows that the shape of the crystal/melt interface is azimuthally distorted and has
two axial minima (ϕ = 5π/6 and ϕ = −π/6) and two maxima (ϕ = π/3 and ϕ = 4π/3)
in the azimuthal direction.

For Ai = 0.5(Mai = 57, Figs. 7a–7d), the azimuthal wave number is m = 2, as for Ai =
0.72; Fig. 7c shows that in this case the amplitude of the temperature disturbances on the
free surface is lower. When the melt aspect ratio is further decreased (Ai < 0.5) due to the
solidification process, the thickness of the mushy region decreases (see Figs. 8a and 9a)
with a linear dependence on Ai. The Marangoni flow becomes more and more confined
near the free surface (the radial extension of the vortex cells in the meridian plane becomes
approximately equal to the axial extension of the liquid zone held between the crystal
surface and the hot supporting disk; see Figs. 8a and 9a). For this reason the isolines of
the temperature field in the inner part (near the axis) of the bridge are no longer convex
and become concave. Correspondingly, the isosurface T = Tm for Ai = 0.33 (Fig. 10d)
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FIG. 8. (a) Flow field in the meridian plane ϕ = −π/6. (b) Azimuthal velocity distribution z = 0.75.
(c) Temperature disturbances r = 1/2A. (d) Temperature distribution z = 0.75 (Ai = 0.33, Mai = 37, t − t∗ = 17.5).

The crystal/melt interface is concave near the axis and convex near the free surface and the
azimuthal distortion is more pronounced in the inner part (Fig. 14a) as described for the
cases A = 1.0 and Ai < 0.5.

For Ai = 0.18 (Mai = 41), a mode m = 4 appears. There are, respectively, eight vortex
cells and surface spots, as shown in Figs. 13b and 13c. Moreover a more complicated
noneccentric pattern appears in the temperature field of the cross section. For m = 4 the
inner region has the form of a quadrangle (Fig. 13d). Correspondingly the crystal/melt
interface shape shows four axial maxima and four minima (ϕ = 3π/7, ϕ = π − π/14, ϕ =
10π/7, ϕ = −π/14) in the azimuthal direction (Fig. 14b). For Ai = 0.135 (Mai = 31) full
stabilization of the thermo-fluid-dynamic field occurs (see Fig. 14c).

5. DISCUSSION

The azimuthal distortion of the shape of the crystal/melt interface is explained on the basis
of the toroidal structure of the supercritical flow field and of the temperature distribution. The
temperature disturbances have m maxima (minima) in the azimuthal direction (as shown by
Figs. 4c–8c). The nodes of the geometrical patterns given by the isolines of the temperature
field in the cross section orthogonal to the axis simply correspond to these extrema in the
temperature field. For m = 1 the geometrical pattern is an eccentric circle (Fig. 4d) since
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FIG. 9. (a) Flow field in the meridian plane ϕ = −π/6. (b) Azimuthal velocity distribution z = 0.75.
(c) Temperature disturbances r = 1/2A. (d) Temperature distribution z = 0.75 (Ai = 0.28, Mai = 32, t − t∗ = 20.6).

there are a minimun and a maximum in the temperature field (the circle corresponds to
the minimum). For m = 2 the geometrical pattern is an ellipse since there are two minima
and two maxima (in Fig. 6d the main axes of the ellipse connect respectively the axis of
symmetry of the bridge with the positions corresponding to a minimum and to a maximum
of the temperature disturbance distribution). For m = 4 (see, e.g., Fig. 13d) the geometrical
pattern is a quadrangle since the temperature disturbances have four maxima.

The radial position of the nodal lines of the temperature perturbations also corresponds
to the position of the vortex centerline after the bifurcation. The present results show that
the position of the vortex core is deformed and in particular displaced sinusoidally along
the perimeter of the toroidal convection roll. This is due to the occurrence of the additional
convective cells (strictly related with the Marangoni flow instability) in the sections orthog-
onal to the bridge axis (shown in Figs. 5b–9b and Figs. 12b and 13b) convecting fluid in
azimuthal direction.

The results on the crystal/melt interface shape show that this surface describes in the
azimuthal direction a sine curve having m maxima and m minima in the z-direction. This
distortion can be simply related to the sinusoidal spatial deformation of the temperature
field, due to the distorted spatial displacement of the vortex core in the supercritical
state.

Regarding the occurrence of different values of the azimuthal wave numbers during the
solidification process (m = 1 and m = 2 for A = 1.0, and m = 2 and m = 4 for A = 0.5),
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FIG. 10. (a) Crystal/melt interface (Ai = 0.885, Mai = 100, t − t∗ = 2.6). (b) Crystal/melt interface (Ai = 0.72,
Mai = 82, t − t∗ = 6.2). (c) Crystal/melt interface (Ai = 0.50, Mai = 57, t − t∗ = 11.9). (d) Crystal/melt interface
(Ai = 0.33, Mai = 37, t − t∗ = 17.5). (e) Crystal/melt interface (Ai = 0.28, Mai = 32, t − t∗ = 20.6).

the explanation for this behavior can be found in the relation between the nature of the
three-dimensional disturbances and the geometry of the liquid zone.

For cylindrical liquid bridges previous numerical computations ([7–11]) have shown
that the flow structure of the supercritical state depends on the value of the aspect ratio
of the liquid bridge. The lower the aspect ratio, the higher the azimuthal wave number m
resulting in the more complex flow organization. It is known that discrete wave numbers of
disturbances are selected out of the full spectrum of disturbances because the convection roll
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a b

FIG. 11. (a) Flow field in the meridian plane ϕ = 3π/7. (b) Flow field in the meridian plane ϕ = 10π/7.
(c) Temperature disturbances r = 1/2A. (d) Temperature distribution z = 0.75 (A = 0.50, Ma = 110, t = t∗).

is closed in a special zone geometry. When the instability is hydrodynamic in nature (i.e., it
does not depend on the temperature field that simply acts as a driving force for the velocity
field), the selection rule is given simply by the constraint that the azimuthal wavelength must
be an aliquot of the toroidal vortex core circumference and by the fact that the convection
roll is limited axially by the presence of the sidewalls (see Lappa et al. [11]). According
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FIG. 12. (a) Flow field in the meridian plane ϕ = 3π/7. (b) Azimuthal velocity distribution z = 0.75.
(c) Temperature disturbances r = 1/2A. (d) Temperature distribution z = 0.75 (Ai = 0.24, Mai = 55, t − t∗ = 23).
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FIG. 13. (a) Flow field in the meridian plane ϕ = 3π/7. (b) Azimuthal velocity distribution z = 0.75.
(c) Temperature disturbances r = 1/2A. (d) Temperature distribution z = 0.75 (Ai = 0.18, Mai = 41, t − t∗ = 27.7).

to this theory, for the problem under investigation, the critical wave number is related to
the axial length (distance between the hot disk and the crystal/melt interface) and to the
diameter of the liquid zone; i.e., in the present case it scales with the parameter Ai = L i/D.
The present numerical results show a simple correlation between the melt aspect ratio and
the azimuthal wave number of the instability:

m Ai
∼= 1. (9)

The stabilization of the flow field, observed for both the cases here considered (A = 1.0
and A = 0.5) when the melt aspect ratio becomes less than a certain value, is explained by
the simultaneous reduction of the instantaneous Marangoni number and of the melt aspect
ratio. There are in fact two different effects leading to the stabilization of the flow field. For
a fixed aspect ratio, decreasing the Marangoni number, subcritical conditions prevail. On
the other hand, as found by Lappa et al. [11], for A < 0.5, the lower the aspect ratio, the
higher the critical Marangoni number should be.

The stabilization of the flow field can be explained also by focusing attention directly
on the nature of the instability. As highlighted in [4], for low Prandtl number liquids, the
bifurcation of the flow field to a steady three-dimensional configuration is directly related to
the inertial instability of the shear layer below the free surface; the instability takes energy
from the radial gradient of the axial velocity, i.e., the axial share. Marangoni forces driving
the flow field induce a strong axial shear flow. For this reason the bifurcation is favored by
increasing the Marangoni number (driving action) and opposed by the presence of walls
(where “no-slip” prevails). For the specific problem under investigation, when the aspect
ratio decreases, the ratio of the free surface area Sl = π DL i (where the “driving force” is
present) divided by the end walls area Sw = π D2/2 (where “no-slip” prevails), Sl/Sw = 2Ai
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also decreases, increasing viscous effects; moreover the decrease of the instantaneous value
of the Marangoni number decreases the Marangoni stress on the free liquid surface. The
simultaneous increase of the viscous effects and decrease of the Marangoni stress stabilize
the flow field.

6. CONCLUSIONS

Marangoni flow instability during solidification in half zone liquid bridges in zero-g con-
ditions has been analyzed by direct solution of the three-dimensional and time-dependent
nonlinear equations. A single region (continuum) formulation (enthalpy–porosity tech-
nique) has been adopted to model the phase-change problem, solving the coupled tempera-
ture and velocity fields over the whole computational domain, including the solid and liquid
phases.

The enthalpy–porosity approach has been extended to the case of problems with free
surface. The typical “stress-balance” Marangoni flow boundary conditions have been mod-
ified in order to take into account the phase-change phenomenon. This is an original con-
tribution to the enthalpy–porosity technique.

For the first time this approach has been applied to the case of a floating zone. The influence
of the azimuthally asymmetric convective field on the shape of the crystal/melt interface
during the solidification process and the relationship among the azimuthal wave number of
the instability and the relative position of the solid/melt interface at each instant have been
investigated. The numerical results show that the crystal/melt interface is distorted in the
azimuthal direction due to the sinusoidal spatial deformation of the temperature field, related
to the spatial displacement of the vortex core caused by the instability of the Marangoni flow.

Different values of the azimuthal wave numbers were found during the solidification
process. This result is explained on the basis of the relation between the typology of the az-
imuthal disturbances and the structure of the fluid-dynamic field. A generalized law is found
to correlate the azimuthal wave number of the instability to the extension of the melt zone.

Until now, all the numerical investigations dealing with the analysis of the relationship
between the azimuthal wave number and the aspect ratio of the liquid zone have been
obtained in the case of “static” liquid bridges (fixed distance between the supporting disks
and no phase change). The results presented in this paper represent a first contribution to the
modeling and understanding of complex phenomena caused by fluid flow and simultaneous
solidification during floating zone crystal growth.

A novel research program is being proposed for the early utilization phase of the Interna-
tional Space Station to analyze in detail Marangoni flow in solidifying liquid bridges, using
materials with low melting point (e.g., succinonitrile) that are transparent in the liquid state.
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